20 resultados para Grain Yield

em Indian Institute of Science - Bangalore - Índia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tank irrigation systems in the semiarid regions of India are discussed in this paper. To optimize the grain yield of rice, it is essential to start the agricultural operations in the second week of July so that favorable climatic conditions will prevail during flowering and yield formation stages. Because of low inflow during the initial few weeks of the crop season, often farmers are forced to delay planting until sufficient sowing rain and inflow have occurred or to adopt deficit irrigation during this period. The delayed start affects the grain yield, but will lead to an improved irrigation efficiency. A delayed start of agricultural operations with increased irrigation efficiency leads to the energy resources becoming critical during the peak requirement week, particularly those of female labor and animal power. This necessitates augmenting these resources during weeks of their peak use, either by reorganizing the traditional methods of cultivation or by importing from outside the system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil incorporation of metalaxyl [methyl N-(2-methoxyacetyl)-N-(2,6,xylyl)-DL-alaninate] significantly enhanced root colonization of the vesicular-arbuscular (VA) mycorrhizal fungi Glomus fasciculatum associated with wheat. The stimulatory response of VA mycorrhizal fungi to low concentration of metalaxyl resulted in increased plant biomass production, nutrient uptake and grain yield of wheat. However, higher concentrations of metalaxyl, particularly 2.5 ppm of metalaxyl affected the mycorrhizal infection and seed yield of wheat, Addition of urban compost to an extent ameliorated the toxic effect of fungicide on VA mycorrhizal colonization, plant growth and yield of wheat when compared to unamended soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper highlights the microstructural features of commercially available interstitial free (IF) steel specimens deformed by equal channel angular pressing (ECAP) up to four passes following the route A. The microstructure of the samples was studied by different techniques of X-ray diffraction peak profile analysis as a function of strain (epsilon). It was found that the crystallite size is reduced substantially already at epsilon=2.3 and it does not change significantly during further deformation. At the same time, the dislocation density increases gradually up to epsilon=4.6. The dislocation densities estimated from X-ray diffraction study are found to correlate very well with the experimentally obtained yield strength of the samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The grain size dependence of the yield stress in hot rolled 99.87 pct magnesium sheets and rods was measured in the temperature range 77 K to 420 K. Hot rolling produced strong basal textures and, for a given grain size, the hot rolled material has a higher strength than extruded material. The yield strength-grain size relation in the above temperature range follows the Hall-Petch equation, and the temperature dependencies of the Hall-Petch constants σ0 and k are in support of the theory of Armstrong for hcp metals that the intercept σ0 is related to the critical resolved shear stress (CRSS) for basal slip (easy slip) and the slope k is related to the CRSS for prismatic slip (difficult slip) occurring near the grain boundaries. In the hot rolled magnesium, σ0 is larger and k is smaller than in extruded material, observations which are shown to result from strong unfavorable basal and favorable 1010 textures, respectively. Texture affects the Hall-Petch constants through its effect on the orientation factors relating them to the CRSS for the individual slip systems controlling them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The unconfined aquifer of the Continental Terminal in Niger was investigated by magnetic resonance sounding (MRS) and by 14 pumping tests in order to improve calibration of MRS outputs at field scale. The reliability of the standard relationship used for estimating aquifer transmissivity by MRS was checked; it was found that the parametric factor can be estimated with an uncertainty a parts per thousand currency sign150% by a single point of calibration. The MRS water content (theta (MRS)) was shown to be positively correlated with the specific yield (Sy), and theta (MRS) always displayed higher values than Sy. A conceptual model was subsequently developed, based on estimated changes of the total porosity, Sy, and the specific retention Sr as a function of the median grain size. The resulting relationship between theta (MRS) and Sy showed a reasonably good fit with the experimental dataset, considering the inherent heterogeneity of the aquifer matrix (residual error is similar to 60%). Interpreted in terms of aquifer parameters, MRS data suggest a log-normal distribution of the permeability and a one-sided Gaussian distribution of Sy. These results demonstrate the efficiency of the MRS method for fast and low-cost prospection of hydraulic parameters for large unconfined aquifers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental investigation into the effect of microstructural changes, which occur during post-extrusion annealing of a Mg based AZ21 alloy, on tensile and fatigue properties is conducted. Mechanical properties in the as-cast, as-extruded, and microstructural states that correspond to recovery, recrystallization and grain growth stages of annealing are compared. Results show that these microstructural changes do not alter the yield strength of the alloy markedly whereas significant differences were noted in the ultimate tensile strength as well as ductility. The initiation of abnormal grain growth (or secondary recrystallization) renders the tensile stress-strain response elastic perfectly plastic and results in a large drop in ductility, as high as similar to 60% during intermediate stages of abnormal grain growth, vis-A-vis the ductility of the as-extruded alloy. While the fatigue performance of all the wrought alloys is far superior to as expected, abnormal grain growth leads to a marked decrease in the endurance that of the as-cast alloy, limit. Possible microscopic origins of these are discussed. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Severe plastic deformation techniques are known to produce grain sizes up to submicron level. This leads to conventional Hall-Petch strengthening of the as-processed materials. In addition, the microstructures of severe plastic deformation processed materials are characterized by relatively lower dislocation density compared to the conventionally processed materials subjected to the same amount of strain. These two aspects taken together lead to many important attributes. Some examples are ultra-high yield and fracture strengths, superplastic formability at lower temperatures and higher strain rates, superior wear resistance, improved high cycle fatigue life. Since these processes are associated with large amount of strain, depending on the strain path, characteristic crystallographic textures develop. In the present paper, a detailed account of underlying mechanisms during SPD has been discussed and processing-microstructure-texture-property relationship has been presented with reference to a few varieties of steels that have been investigated till date.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of crystallographic texture and the change in the grain size during warm rolling (300 deg K) and their effect on the tensile yield strength at 77 and 300 deg K are studied in 99.9% pure Cd. Both longitudinal and transverse specimens are tested. The yield strength obeys the Hall--Petch relation. The Hall--Petch slope, k, is lower and the intercept sigma o is higher in the warm worked material in comparison with the corresponding values for annealed Cd. The differences are attributed to the change in 1013 < and 0001 textures that are developed during warm rolling.26 refs.--AA

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is the first successful attempt to produce simultaneously ultrafine grain size and weak texture in a single-phase magnesium alloy Mg-3Al-0.4Mn through an optimal choice of processing parameters in a modified multi-axial forging (MAF) process. An average grain size of similar to 0.4 mu m and a weak texture could be achieved. This has led to an increase in the strength as well as room-temperature ductility (55%). The plot of the yield loci shows a decrease in anisotropy after MAF. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unusual low-temperature magneto-resistance (MR) of ferromagnetic Sr2FeMoO6 polycrystals has been attributed to magnetically hard grain boundaries which act as spin valves. We detected the different magnetic hysteresis curves for the grains and the grain boundaries of polycrystalline Sr2FeMoO6 by utilizing the different probing depths of the different detection modes of x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD), namely, the total electron yield (TEY) mode (probing depth similar to 5 nm) and the total fluorescence yield (TFY) mode (probing depth similar to 100 nm). At 20 K, the magnetic coercivity detected in the TEY mode (H-c,H- TEY) was several times larger than that in the TFY mode (H-c,H- TFY), indicating harder ferromagnetism of the grain boundaries than that of the grains. At room temperature, the grain boundary magnetism became soft and H-c,H- TEY and H-c,H- TFY were nearly the same. From the line-shape analysis of the XAS and XMCD spectra, we found that in the grain boundary region the ferromagnetic component is dominated by Fe2+ or well-screened signals, while the non-magnetic component is dominated by Fe3+ or poorly screened signals. Copyright (C) EPLA, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attractive microstructural possibility for enhancing the ductility of high-strength nanocrystals is to develop a bimodal grain-size distribution, in which the fine grains provide strength, and the coarser grains enable strain hardening. Annealing of nanocrystalline Ni over a range of temperatures and times led to microstructures with varying volume fractions of coarse grains and a change in texture. Tensile tests revealed a drastic reduction in ductility with increasing volume fraction of coarse grains. The reduction in ductility may be related to the segregation of sulphur to grain boundaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The grain size dependencies of the yield and fracture stresses in hot rolled Mg-12.7 at % Cd alloy have been measured in the temperature range 77 to 420 K and are found to be in accordance with HalI-Petch type of equations. In hot rolled Mg-12.7 Cd alloy, the HalI-Petch intercept a w is higher than that in hot rolled magnesium, while the slope ky is comparable. The fracture is intercrystalline at 77 K, mixed mode at 300 K and ductile at 420 K. The above flow and fracture behaviours are interpreted in terms of the complimentary effects of texture hardening and solid solution strengthening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dimethoxytetralol gives on Vilsmeier reaction the dihydronaphthaldehyde (yield,92%), which on Grignard reaction with MeMgI affords the title compound (yield,�100%), the reactions constituting a high yield synthesis of this important anthracyclinone intermediate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analyses of diffusion and dislocation creep in nanocrystals needs to take into account the generally utilized low temperatures, high stresses and very fine grain sizes. In nanocrystals, diffusion creep may be associated with a nonlinear stress dependence and dislocation creep may involve a grain size dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies (I-7) clearly indicate a strong dependence of fatigue threshold parameter, A K on grain size in several alloy systems. Attempts to explain these observations on the basis of crat~tortuosity (1,8), fracture surface roughness (5,9) and crack closure (6) appear to present a fairly clear picture of the mechanisms that cause a reduction in crack growth rates at threshold. In general, it has been shown that coarse grained microstructures exhibit higher fatigue threshold in low carbon steels (1,5) aluminium alloys (7) and titanium alloys (6). In spite of these observations, there exists (10-1#) considerable uncertainity about the manner in which the AK~L depends on prior austenitic grain size in quenched and tempered steels. Studies in quenched and tempered steels demonstrating both an increase (3,12,14) as well as a decrease (11,12) in AKth with an increase in prior austenitic grain size can be sought to illustrate this point. Occasionally , the absence of any sensitivity of AKth to the variations in prior austenitJc grain size has also been reported (11,13). While a few investigators (5-7) comfortably rationalised the grain size effects on AK~L on the basis of crack closure by a comparison in terms of the closure-free component of the thresho~Ifc~, AK -f such an approach has yet to be extended to high strength steels, An attempt has been made in t~et ,pthrg sent study to explai. n the effect of pri, or austeniti.c grain size on &Kth on the basis of crack closure measurements in a high strength steel.